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Abstract
We review the fundamentals of coupling constant metamorphosis (CCM) and
the Stäckel transform, and apply them to map integrable and superintegrable
systems of all orders into other such systems on different manifolds. In
general, CCM does not preserve the order of constants of the motion or
even take polynomials in the momenta to polynomials in the momenta. We
study specializations of these actions which preserve polynomials and also the
structure of the symmetry algebras in both the classical and quantum cases.
We give several examples of non-constant curvature third- and fourth-order
superintegrable systems in two space dimensions obtained via CCM, with some
details on the structure of the symmetry algebras preserved by the transform
action.

PACS numbers: 02.00.00, 02.20.Qs,02.30.Ik, 03.65.Fd

1. Introduction

There has been a recent rapid expansion in the number of known classical and quantum
superintegrable systems of order 2 [1, 2] and, particularly, of order 3 and higher [3–9]. For
many of these systems it has been demonstrated that the algebra generated by the fundamental
higher order symmetries closes under the Poisson bracket in the classical case, and under
the commutator in the quantum case, to form a finite dimensional quadratic or cubic algebra.
The representation theory of these algebras and their association with basic properties of the
special functions of mathematical physics is of great current interest [10–16]. Indeed, the basic
properties of Gaussian hypergeometric functions and their various limiting cases, as well as
Lamé, Mathieu and Heun functions, and ellipsoidal harmonics all appear as associated with
second-order superintegrable quantum systems via separation of variables. These functions as
well as orthogonal polynomials of a discrete variable, including the general Wilson and Racah
polynomials, are bound up with function space models of the irreducible representations of
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the quadratic algebras associated with second-order superintegrable quantum systems. The
Painlevé transcendents (not associated with variable separability) appear in the study of third-
order superintegrable systems. Some examples are known for conformally flat manifolds in n
dimensions [17–19], but most results are known for two- and three-dimensional conformally
flat spaces.

There is a disconnect, however, between what is known for second-order superintegrable
systems and what is known for third and higher order systems. For the second-order
superintegrable systems, classical and quantum, all such systems and all manifolds of
dimension 2 on which they occur have been classified and the mechanism of the closure
of the quadratic algebra is well understood, [20–24]. For conformally flat manifolds in three
dimensions great advances have been made although the classification and structure analysis
is not yet complete [22, 25–28]. A major tool for obtaining these second-order results has
been the Stäckel transform [29, 30], a variant of coupling constant metamorphosis (CCM)
[31], which enables a 1-1 invertible transformation between a second-order superintegrable
system on one manifold and a superintegrable system on another manifold that preserves the
symmetry algebra structure. This has given us an elegant method for classification of all 2D
superintegrable systems through the important fact that every such system can be shown to
be the Stäckel transform of a system on a constant curvature space, [2, 21, 24]. Also it gives
important insight into the structure of Koenigs’ remarkable potential-free results [32]. Similar
results are known for 3D systems, but the classification is not yet complete [26–28].

For third and higher order superintegrable systems, however, there is no structure and
classification theory. Only examples are known, and these are very difficult to obtain. The
symmetry algebras can be computed for each example, but the mechanism for their closure
and structure is not understood. Virtually all known examples are in 2D or 3D Euclidean
space. The present paper is a first attempt at refining a tool (CCM/Stäckel transform), that has
proved so successful in the classification and structure theory for second-order systems, so that
it applies to higher order superintegrable systems. There are two basic issues here. The first
is that CCM in general does not preserve the structure of the symmetry algebras. We have to
determine a suitable restriction that does preserve the structure. Secondly, CCM is a classical
phenomenon; its extension to the quantum case is not automatic and requires special care. In
this paper most of our classical results will be stated for n-dimensional systems whereas, for
simplicity, the quantum results will be limited mostly to two dimensions.

In future papers we will extend the operator CCM to three and higher dimensions and
employ this tool to attack the structure and classification theory for third and higher order
superintegrable systems in all dimensions. An immediate result of the present paper is the
explicit display of a large number of higher order superintegrable systems on manifolds not of
constant curvature, the existence of which seems not to be widely recognized. We also provide
new examples of explicit structure computations for the quadratic algebras of some third- and
fourth-order superintegrable systems on 2D Euclidean space that map to isomorphic systems
on non-constant curvature spaces.

Before proceeding to our results we give some basic definitions that we employ
throughout the paper. A classical superintegrable system on an n-dimensional real or
complex Riemannian or pseudo-Riemannian manifold is defined by its associated Hamiltonian
function H = ∑

ij gijpipj + V (x) on the phase space of this manifold. Here gij (x) is the
contravariant metric tensor in local coordinates x and V (x) is a prescribed function that may
depend on some parameters. The system is superintegrable if it admits 2n − 1 functionally
independent generalized symmetries (or constants of the motion) Sk, k = 1, . . . , 2n − 1,

with S1 = H where Sk are polynomials in the momenta pj. That is, {H,Sk} = 0 where
{f, g} = ∑n

j=1(∂xj
f ∂pj

g − ∂pj
f ∂xj

g) is the Poisson bracket for functions f (x, p), g(x, p)
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on phase space. It is easy to see that 2n − 1 is the maximum possible number of functionally
independent symmetries and, locally, such (in general nonpolynomial) symmetries always
exist. Most authors, but not us, also demand that the system is integrable, i.e. there is a subset
of n functionally independent polynomial symmetries, say S1, . . . ,Sn, such that {Sj ,S�} = 0,
1 � s, � � n. If the maximum order of the polynomials corresponding to the generating
symmetries is N, we say that the system is Nth-order superintegrable.

Superintegrable systems can lay claim to be the most symmetric Hamiltonian systems
though many such systems admit no group symmetry; the symmetry is ‘hidden’. Generically,
every geometrical trajectory in phase space (but not the time dependence of the trajectory
p(t), x(t)) of the Hamilton equations of motion for the system is obtained as the common
intersection of the (constants of the motion) hypersurfaces Sk(p, x) = ck, k = 0, . . . , 2n − 2.
The orbits can be found without solving the equations of motion. Since every known
superintegrable system is also integrable, this is better than integrability. A case can be
made that the second-order superintegrability of the Kepler–Coulomb two-body problem,
forcing the existence of conic sections as trajectories, is the reason that Kepler was able to
determine the planetary elliptical orbits before the invention of calculus.

There is an analogous definition of superintegrability for quantum systems with the
Schrödinger operator

H = � + V (x), � = 1√
g

∑
ij

∂xi
(
√

ggij )∂xj
,

the Laplace–Beltrami operator plus a potential function. Here it is required that there are
2n − 1 functionally independent differential operators, S1 = H, S2, . . . , S2n−1 such that
[H, Sk] ≡ HSk − SkH = 0. Often there is a 1–1 relationship between classical and quantum
superintegrable systems associated with a potential and then functional independence refers
to the classical system. In those cases where there is no classical analog, however, there is no
agreed upon definition of quantum functional independence. A basic motivation for studying
these systems is that they can be solved explicitly, often in multiple ways. Typically their
symmetry algebras close to form quadratic, cubic or similar algebras whose representation
theory yields spectral information about the quantum system.

In the following sections we review the basic definition and properties of CCM and
the closely related Stäckel transform for classical systems. These concepts apply to any
Hamiltonian system with potential, not just superintegrable systems. Then we define
specializations of these general concepts that preserve the order of symmetries and also
define symmetry algebra isomorphisms. It is these specializations that are needed for the
study of superintegrable systems. Then, and most importantly, we find quantum analogs of
these classical transforms. At each stage we provide examples, several of them new.

2. Coupling constant metamorphosis

The basic tool that we will employ follows from ‘coupling constant metamorphosis’ (CCM),
a general fact about Hamiltonian systems, pointed out in [31]. Let H(x, p) + αU(x) define a
Hamiltonian system in 2n-dimensional phase space, with canonical coordinates xj , pj . Thus,
the Hamilton–Jacobi equation would take the form H(x, p) + αU(x) = E. Assume that for
every value of the parameter α the system admits a constant of the motion K(α), analytic in α.

Theorem 1. Coupling constant metamorphosis. The Hamiltonian H′ = (H − E)/U admits
the constant of the motion K′ = K(−H′), where now E is a parameter.

3
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Proof. Note that if F,G are functions on phase space of the form G(x, p), F = F(a) =
F(a, x, p) where a = α(x, p), then

{F,G} = {F(a),G}|a=α(x,p) + ∂aF (a)|a=α(x,p){α,G}.
By assumption, {K(α),H} = −α{K(α), U} for any value of the parameter α. Thus,

{K(α),H′} = {U,K(α)}
U

(H′ + α).

Now

{K(−H′),H′} =
[
∂αK(α){H′,H′} +

{U,K(α)}
U

(H′ + α)

]
α=−H′

= 0.

�

Corollary 1. Let K1(α),K2(α) be constants of the motion for the system H(x, p) + αU(x).
Then {K1,K2}(α) ≡ {K1(α),K2(α)} is also a constant of the motion and

{K1(−H′),K2(−H′)} = {K1,K2}(−H′).

Clearly CCM takes integrable systems to integrable systems and superintegrable systems
to superintegrable systems. We are concerned with the case where

H =
n∑

i,j=1

gijpipj + V (x) + αU(x) ≡ H0 + V + αU (1)

is a classical Hamiltonian system on an n-dimensional pseudo-Riemannian manifold and are
interested only in those constants of the motion K that are polynomial in the momenta. As we
shall see, in the case of second-order constants of the motion there is special structure. The
second-order constants of the motion are typically at most linear in α, so they transform to
second-order symmetries again. In this case CCM agrees with the Stäckel transform that we
shall take up in the next section. However, in general the order of constants of the motion is
not preserved by CCM.

Example 1. The system

H = p2
1 + p2

2 + b1
√

x1 + b2x2

admits the second-order constant of the motion K(2) = p2
2 + b2x2 and the third-order constant

of the motion K(3) = p3
1 + 3

2b1
√

x1p1 − 3b2
1

4b2
p2 ([4] and references contained therein). If we

choose αU = α
√

x1, then the transform of K(3) will be fifth order. If we choose αU = αx2,
then the transform of K(3) will be rational, but nonpolynomial. Thus, to obtain useful structure
results from this general transform, and to obtain results that have the possibility of carrying
over to the quantum case, we need to restrict the generality of the transform action.

3. The Jacobi transform

Here we study a specialization of CCM to the case where V = 0. The special version of
the transform we study takes Nth-order constants of the motion for Hamiltonian systems to
Nth-order constants of the motion. An Nth-order constant of the motion K(x, p) for the
system

H =
n∑

i,j=1

gijpipj + U(x) = H0 + U (2)

4



J. Phys. A: Math. Theor. 43 (2010) 035202 E G Kalnins et al

is a function on the phase space such that {K,H} = 0 where

K = KN + KN−2 + KN−4 + · · · + K0, n even,

K = KN + KN−2 + KN−4 + · · · + K1, n odd.

Here, KN �= 0 and Kj is homogeneous in p of order j . This implies the conditions

{KN,H0} = 0, (3)

{KN−2k, U} + {KN−2k−2,H0} = 0, k = 0, 1, . . . , [N/2] − 1, (4)

and, for N odd,

{K1, U} = 0. (5)

The case N = 1 is very special. Then K = K1 and the conditions are

{K,H0} = 0, {K, U} = 0,

so K is a Killing vector and U is invariant under the local group action generated by the Killing
vector.

For N = 2, K = K2 + K0 and the conditions are

{K2,H0} = 0, {K2, U} + {K0,H0} = 0, (6)

so K2 is a second-order Killing tensor and U satisfies (linear) Bertrand–Darboux integrability
conditions.

For N = 3, K = K3 + K1 and the conditions are

{K3,H0} = 0, {K3, U} + {K1,H0} = 0, {K1, U} = 0

so K3 is a third-order Killing tensor. The integrability conditions for the last two equations
lead to nonlinear PDEs for U.

Theorem 2. Suppose the system (2) admits an Nth-order constant of the motion K where
N � 1. Then

K̂ =
[N/2]∑
j=0

(
−H0 − E

U

)j

KN−2j

is an Nth-order constant of the motion for the system (H0 − E)/U .

Proof. It follows from the general conditions (3), (4), (5) that

K(α) =
[N/2]∑
j=0

αjKN−2j

is a constant of the motion for the system H(α) = H0 + αU . Then from theorem 1, we have
that K

(−H0−E

U

)
is an Nth-order constant of the motion for the system (H0 − E)/U . �

Note that if we set E = 0, then K̂ becomes an Nth-order Killing tensor for the free system
H0/U .

Corollary 2. Suppose the system H0 + U is Nth-order superintegrable. Then the free system
H0/U is also Nth-order superintegrable.

We will call K̂ a Jacobi transform of K, in recognition of its close relationship with the
Jacobi metric ([33], p 172) and to distinguish it from the Stäckel transform and more general
CCM. Note that the Jacobi transform for general parameter E is invertible.
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Corollary 2 tells us that each of the third-order superintegrable systems found by Gravel in
2D Euclidean space [4] yields superintegrable systems on conformally flat manifolds, usually
not of constant curvature.

Corollary 3. The Jacobi transform satisfies the properties

̂{K,L} = {K̂, L̂}, K̂L = K̂L̂,

and, if K, L are of the same order, ̂aK + bL = aK̂ + bL̂. Thus, it defines a homomorphism
from the graded symmetry algebra of the system H0 + U to the graded symmetry algebra of
the system (H0 − E)/U .

Example 2. Consider the system of example 1: H = p2
1 + p2

2 + b1
√

x1 + b2x2, and let
U = b1

√
x1 + b2x2 + b3 for some fixed b1, b2, b3 with b1b2 �= 0. The new Hamiltonian is

Ĥ = p2
1 + p2

2 − E

b1
√

x1 + b2x2 + b3

and the Jacobi transforms of K(2),K(3) are

K̂(2) = p2
2 − b2x2

(
p2

1 + p2
2 − E

b1
√

x1 + b2x2 + b3

)
,

K̂(3) = p3
1 −

(
3

2
b1

√
x1p1 − 3b2

1

4b2
p2

) (
p2

1 + p2
2 − E

b1
√

x1 + b2x2 + b3

)
.

4. The Stäckel transform

Using the same notation as in the previous section, and a particular nonzero potential
U = V (x, b0) we define the Stäckel transform for a system H = H0 + V (x, b) [29]. The

transform of K = K1 is K̃ = K1. The transform of K = K2 + K0 is K̃ = K − KU
0

U
H.

(Here Kj is a homogeneous polynomial in p of order 2j , and KU
j is the restriction of Kj to

the potential V = U .) The transform maps first- and second-order constants of the motion
for H to constants of the motion for the system H/U . Thus, the system H is second-order
superintegrable iff the system H/U is second-order superintegrable. For completeness we
review briefly the direct proofs of the basic theoretic facts.

Theorem 3. Let K be a second-order constant of the motion for the system H and U be a
particular instance of the potential V. Then K̃ is a second-order constant of the motion for the
system H/U .

Proof. {
K̃,

H
U

}
=

{
K − KU

0

U
H,

H
U

}
= − H

U 2

({K2, U} +
{
KU

0 ,H0
}) = 0.

�

Corollary 4. Let K,L be second-order constants of the motion for the system H and let
K̃, L̃ be their respective Stäckel transforms determined by the potential U. If {K,L} = 0, then
{K̃, L̃} = 0.

Proof. Suppose {K,L} = 0. We have

{K,L} = {K2,L2} + ({K2,L0} + {K0,L2}) = 0,

6



J. Phys. A: Math. Theor. 43 (2010) 035202 E G Kalnins et al

where the first term on the right-hand side is of order 3 and the second term is of order 1.
Thus,

{K2,L2} = {K2,L0} + {K0,L2} = 0.

Then a straightforward computation yields

{K̃, L̃} = {K,L} − H
U

({
K2,LU

0

}
+

{
KU

0 ,L2
}) = 0.

�

Corollary 5. Let {K,L} = 0 be as in corollary 4 and assume that one instance of the
potential V is the constant 1, i.e. V (x, b0) = 1. Then if {K̃, L̃} = 0, we must have {K,L} = 0.

Proof. Suppose {K̃, L̃} = 0. Then the order 3 and order 1 terms on the left-hand side of this
expression must vanish separately:

{K2,L2} − H0

U

({
K2,LU

0

}
+

{
KU

0 ,L2
}) = 0, (7)

{K2,L0} + {K0,L1} − V

U

({
K2,LU

0

}
+

{
KU

0 ,L2
}) = 0. (8)

Identity (7) says that

{K2,L2} = H0X (9)

where X = 1
U

({
K2,LU

0

}
+

{
KU

0 ,L2
})

. Since K2,L2 are second-order Killing tensors of H0,
it follows easily from the Jacobi relation for the Poisson bracket that X is a Killing vector.
From identity (8) we obtain the result

{K,L} + HX = {K̃, L̃} = 0. (10)

Taking the Poisson bracket of the left-hand side of this last identity with H we see that X is a
first-order constant of the motion for system H. From (8) we have

X = 1

U

({
K2,LU

0

}
+

{
KU

0 ,L2
}) = 1

V

({
K2,LV

0

}
+

{
KV

0 ,L2
})

for any nonzero choice of potential V. Choosing V = 1 we find

X = {
K2,L1

0

}
+

{
K1

0,L2
}
. (11)

From relation (6) with V = 1 we have {K2, 1} +
{
K1

0,H0
} = 0 so

{
K1

0,H0
} = 0. Since the

metric is nondegenerate, this implies that K1
0 = c1, a constant. Similarly, L1

0 = c2 is constant.
Thus, (11) implies X = 0, which together with (10) implies {K,L} = 0. �

An alternate way of proving corollary 5 is to demonstrate that there is an ‘inverse’ Stäckel
transform that takes the system H/U to H via the special potential 1/U . The outcome of
applying the initial transform to a second-order constant of the motion K of H and then
transforming back is K − K1

0H, where K1
0 is a constant. If each second-order symmetry K is

normalized by the requirement K1
0 = 0 (by adding a suitable constant), then this action is the

identity operator.
These results show that the Stäckel transform takes second-order superintegrable systems

to second-order superintegrable systems, preserves variable separability and is invertible. As
stated in this generality for second-order symmetries, the Stäckel transform is not a special
case of CCM, although the two transforms are closely related. However, in the situation
where the potential functions V (x, b) form a finite-dimensional vector space, which is usual
in the study of second-order superintegrability, then the transforms coincide. In this case, by
redefining parameters if necessary, we can assume V is linear in b.

7
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Now we will investigate extensions of the Stäckel transform to higher order constants of
the motion, under the assumption that V (x, b) is linear in b = (b0, b1, . . . bM), U is of the form
U(x) = V (x, b0) and the potentials V (x, b) span a space of dimension M + 1. In particular,

V (x, b) = b0 +
M∑
i=1

U(i)(x)bi (12)

where the set of functions {1, U(1)(x), . . . , U(M)(x)} is linearly independent. In the study of
second-order superintegrability, typically the second-order constants of the motion are linear
in b and the algebra generated by these symmetries via products and commutators has the
property that a constant of the motion of order N depends polynomially on the parameters with
order � [N/2]. Thus, we consider only those higher order constants of the motion of order N
of the form

K =
[N/2]∑
j=0

KN−2j (p, b) (13)

where KN−2j (ap, b) = aN−2jKN−2j (p, b) and KN−2j (p, ab) = ajKN−2j (p, b) for any
parameter a. Let K(b) be such an Nth-order constant of the motion. Then

K(α) ≡ K(p, b + αb(0)) (14)

is an Nth-order constant of the motion for the system with Hamiltonian H0 + V (x, b) + αU(x).
Applying theorem 1 we have

Theorem 4. Let K be an Nth-order constant of the motion for the system H0 + V (x, b) where
V is of the form (12) and K is of the form (13). Let K(α) be defined by (14). Then

K̃ = K
(

−H0 + V (x, b)

U(x)

)
=

[N/2]∑
j=0

K̃N−2j (p, b)

is an Nth-order constant of the motion for the system (H0 + V (x, b))/U(x), where

K̃N−2j (ap, b) = aN−2j K̃N−2j (p, b), K̃N−2j (p, ab) = aj K̃N−2j (p, b) (15)

for any parameter a.

Example 3. This example of a fourth-order superintegrable system is taken from [9] and
corresponds to the choice k = 2 for the potential V = Ar2 + B/r2 cos2(kt) + C/r2 sin2(kt)

for suitable A,B,C, as written in polar coordinates. The structure relations and transform are
new. Let

H = p2
1 + p2

2 + a
(
x2

1 + x2
2

)
+ b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 + c

(
x2

1 + x2
2

)
x2

1x2
2

.

There are two basic constants of the motion, one of second order,

K2 = (x1p2 − x2p1)
2 + 4b

x2
1x2

2(
x2

1 − x2
2

)2 + c

(
x4

1 + x4
2

)
x2

1x
2
2

and, one of fourth order,

K4 = (
p2

1 − p2
2

)2
+

[
2ax2

1 + 2b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 − 2c

(
x2

1 − x2
2

)
x2

1x2
2

]
p2

1

+

[
−4ax1x2 + 8b

x1x2(
x2

1 − x2
2

)2

]
p1p2

8
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+

[
2ax2

2 + 2b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 + 2c

(
x2

1 − x2
2

)
x2

1x
2
2

]
p2

2

+ a2
(
x2

1 − x2
2

)2
+

b2(
x2

1 − x2
2

)2 + c2

(
x2

1 − x2
2

)2

x4
1x4

2

+ 8ab
x2

1x2
2(

x2
1 − x2

2

) + 2
bc

x2
1x2

2

.

These constants of the motion generate a closed Poisson algebra. Let R = {K2,K4}. The
relations are

{K2,R} = 32(H2 − 2K4)K2 − 64(b + 2c)K4 + 64(b − c)H2 − 128abK1 − 128ab(b + 2c),

{K4,R} = 32K4(K4 − H2) + 128aK2H2 − 384a2K2
2 + 128abK4 − 64(b + 4c)aH2

+ 256a2(2c − b)K2 + 128a2(b2 + 40c2 + 20bc).

There is a Casimir constraint

R2 = 64K2K4(H2 − K4) − 64bH4 + 128(b − c)K4H2 − 64(b + 2c)K2
4 − 128aK2

2H2

+ 256a2K3
2 − 256abK2K4 + 128a(b + 4c)H2K2 + 256a2(b − c)K2

2

− 256ab(b + 2c)K4 + 256a(7bc + b2 − 2c2)H2 − 256a2(b2 + 4c2 + 20bc)K2

− 256a2(2c + b)(b2 + 16bc − 4c2).

Then the Stäckel transformed system

H̃ =
p2

1 + p2
2 + a

(
x2

1 + x2
2

)
+ b

(
x2

1 +x2
2

)(
x2

1 −x2
2

)2 + c

(
x2

1 +x2
2

)
x2

1 x2
2

+ d

(
x2

1 + x2
2

)
+ B

(
x2

1 +x2
2

)(
x2

1 −x2
2

)2 + C

(
x2

1 +x2
2

)
x2

1 x2
2

+ D

is also superintegrable with fourth- and second-order generating constants of the motion. Note
that for B = C = 0, D = 4, the transformed system is defined on a Darboux space of type 3,
whereas if B = D = 0, C = 1 the transformed system is defined on a Darboux space of type
2 [2].

5. 2D quantum symmetries

Here we begin the study of quantum symmetries. The quantization is much simpler in the 2D
case than for dimensions greater than 2, and for first- and second-order symmetries, so we
begin with these special cases to gain insight. Here the metric, expressed in Cartesian-like
coordinates, is ds2 = λ(x)

(
dx2

1 +dx2
2

)
, and the Hamiltonian systemH = (

p2
1 +p2

2

)/
λ(x)+V (x)

is replaced by the Hamiltonian (Schrödinger) operator with potential

H = 1

λ(x)
(∂11 + ∂22) + V (x). (16)

5.1. Second-order operator symmetries

A second-order symmetry of the Hamiltonian system K = ∑2
k,j=1 akj (x)pkpj + W(x), with

akj = ajk , corresponds to the operator

K = 1

λ(x)

2∑
k,j=1

∂k(λ(x)akj (x)∂j ) + W(x), akj = ajk.

9
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These operators are formally self-adjoint with respect to the bilinear product

〈f, g〉λ =
∫

f (x)g(x)λ(x) dx1 dx2

on the manifold, i.e.

〈f,Hg〉λ = 〈Hf, g〉λ, 〈f,Kg〉λ = 〈Kf, g〉λ
for all local C∞ functions f, g with compact support on the manifold, where the domain of
integration is C2 or R2. If the functions defining a differential operator are singular on a
one-dimensional or zero-dimensional set, we restrict the support of f, g to be bounded away
from this set. We define the formal adjoint T ∗ of a linear operator T on the space C∞

0 by

〈T ∗f, g〉λ = 〈f, T g〉λ (17)

for all f, g ∈ C∞
0 . The operators H,K are formally self-adjoint: H ∗ = H,K∗ = K .

If the Schrödinger equation admits a multiplicative separable solution in particular
coordinates x1, x2, then the Schrödinger operator can be written as

H = 1

X(1)(x1) + X(2)(x2)
(∂11 + ∂22 + V (1)(x1) + V (2)(x2)) (18)

where the second-order symmetry responsible for the separation is

K = 1

X(1)(x1) + X(2)(x2)
(X(2)(x2)∂11 − X(1)(x1)∂22 + X(2)(x2)V

(1)(x1) − X(1)(x1)V
(2)(x2)).

(19)

Thus, the metric is λ(x) = X(1)(x1) + X(2)(x2) and the potential is V (x) = (V (1)(x1) +
V (2)(x2))/(X

(1)(x1) + X(2)(x2)).
A first-order symmetry of the Hamiltonian system L = ∑2

k=1 ak(x)pk corresponds to the
operator

L =
2∑

k=1

(
ak(x)∂k +

∂k(λ(x)ak(x))

2λ(x)

)
.

It is easy to show that L is formally skew-adjoint, i.e. L∗ = −L.
The following results that relate the operator commutator [A,B] = AB − BA and the

Poisson bracket are straightforward to verify.

Lemma 1.

{H,K} = 0 ⇐⇒ [H,K] = 0.

This result is not generally true for higher dimensional manifolds.

Lemma 2.

{H,L} = 0 ⇐⇒ [H,L] = 0.

The classical Stäckel transform for these systems can easily be extended to the operator
case. Suppose V is a parametrized potential and let U be a special instance of that potential. Let
K = 1

λ

∑
∂i(λaij ∂j ) + W = K2 + K0, where K0 = W be a second-order formally self-adjoint

symmetry operator of H and KU
0 be the restriction of K0 to V = U . Then

K̃ = K − KU
0 U−1H

is the corresponding formally self-adjoint symmetry operator of H̃ = U−1H , with respect to
the metric ds̃2 = Uλ

(
dx2

1 + dx2
2

)
. Here the order of operators in a product is important and a

function represents the operation of multiplying on the left-hand side by that function.

10
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Theorem 5.

(1)

[H̃ , K̃] = 0 ⇐⇒ [H,K] = 0.

(2)

K̃ =
∑
ij

1

Uλ
∂i

((
aij − δij WU

Uλ

)
Uλ

)
∂j +

(
W − WUV

U

)
.

Proof.

(1) This is a straightforward verification, using the identities

[H0,K2] = 0, [H0 + V,K2 + K0] = 0, [H0 + U,K2 + KU
0 ] = 0,

(20)
[A,BC] = B[A,C] + [A,B]C, [A,U−1] = −U−1[A,U ]U−1

for linear operators A,B,C and nonzero function U.
(2) This follows from the fact that ∂iK

U
0 ≡ ∂iW

U = λ
∑

j aij ∂jU . �

Note that the second part of the theorem shows that K̃ is indeed formally self-adjoint on
the manifold with metric Uλ(dx2

1 +dx2
2). Another way to see this is to use the formal definition

of adjoint. With respect to the inner product on the space with weight function Uλ we have
〈f, g〉Uλ = 〈f,Ug〉λ = 〈Uf, g〉λ. Thus,

〈K̃f, g〉Uλ = 〈(
UK − UKU

0 U−1H
)
f, g

〉
λ

= 〈
f,

(
KU − HKU

0

)
g
〉
λ

= 〈
f,

(
U−1KU − U−1HKU

0

)
g
〉
Uλ

.

This shows that K̃∗ = U−1KU − U−1HKU
0 = K̃ , where the final equality follows directly

from identities (20).

Corollary 6. If K(1), K(2) are second-order symmetry operators for H, then

[K̃(1), K̃(2)] = 0 ⇐⇒ [K(1), K(2)] = 0.

Since one can always add a constant to a potential, it follows that 1/U defines an inverse
Stäckel transform of H̃ to H.

5.2. Third-order operator symmetries

A classical third-order symmetry takes the form K = K3 + K1 where

K3 =
2∑

k,j,i=1

akji(x)pkpjpi, K1 =
2∑

�=1

b�(x)p�.

The conditions {K3,H0} = 0 are

2aiii
i = −3((ln λ)ia

iii + (ln λ)ja
jii), i �= j,

3a
jii

i + aiii
j = −3((ln λ)ia

iij + (ln λ)ja
ijj ), i �= j, (21)

2
(
a122

1 + a112
2

) = −(ln λ)1a
122 − (ln λ)1a

111 − (ln λ)2a
222 − (ln λ)2a

112,

11
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which are just the requirements that akji be the components of a third-order Killing tensor. The
conditions {K3, V } + {K1,H0} = 0 are

b1
2 + b2

1 = 3
2∑

s=1

λas21Vs,

(22)

b
j

j = 3

2

2∑
s=1

λasjjVs − 1

2

2∑
s=1

(ln λ)sb
s, j = 1, 2,

and the condition {K1, V } = 0 is
2∑

s=1

bsVs = 0. (23)

Now let us consider a third-order operator symmetry K that is skew-adjoint. The detailed
conditions [K,H ] = 0 are complicated. However, we will restrict ourselves to systems
with potentials that simultaneously admit a third-order classical symmetry and the related
third-order quantum symmetry. A characteristic feature of such systems, and one that we will
exploit, is that if U is such a potential then so is αU for all scalars α. If K is the classical
symmetry, then we can write the operator symmetry in the form K = K ′

3 + K ′
1 where K ′

3,K
′
1

are skew-adjoint of respective orders 3 and 1,

K ′
3 =

2∑
k,j,i=1

(
akji∂kji +

3

2λ
(akjiλ)i∂kj +

1

2λ
(akjiλ)kj ∂i

)
,

K ′
1 =

2∑
i=1

(
Bi∂i +

1

2λ
(Biλ)i

)
,

and the terms akji satisfy (21).
Now replace V by αU . Then the symmetry condition is [K(α),H0 + αU ] = 0 for all α

where K = K ′
3 + K ′

1(α). We assume that K(α) is analytic in α about α = 0. Then K ′
3 is

independent of α and the dependence of K ′
1 on α is at most first order. Thus, we can write

Bi(α) = ci + αbi or K ′
1(α) = K ′′

1 + αK1. The symmetry condition can be written as

0 = [K ′
3 + K ′′

1 + αK1,H0 + αU ]

= [K ′
3 + K ′′

1 ,H0] + α([K ′
3 + K ′′

1 , U ] + [K1,H0]) + α2[K1, U ],

for all α. Setting K3 = K ′
3 + K ′′

1 we have the identities

[K3,H0] = 0, [K3, U ] + [K1,H0] = 0, [K1, U ] = 0. (24)

Note that the second-order terms in the second identity are precisely the classical conditions
(22). The third identity is precisely the classical condition (23). The operator K ′′

1 determines
the transition from the classical constant of the motion to the operator symmetry. Now define

K̃ = K3 − K1U
−1(H0 + b),

where the operator order is important and b is a constant. A straightforward computation
using identities (24) yields [K̃, U−1(H0 + b)] = 0, so K̃ is a third symmetry operator for the
Hamiltonian U−1(H0 + b).

Theorem 6. Let H(α) = H0 + αU , and let K(α) be a third-order skew-adjoint symmetry
of H, analytic in α about α = 0. Then there are first- and third-order skew-adjoint
operators K1,K3 such that K(α) = K3 + αK1 and identities (24) are satisfied. The operator
K̃ = K3 − KU

1 U−1(H0 + b) is a third-order symmetry for the system H̃ = U−1(H0 + b).

12
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Corollary 7. K̃∗ = −K̃ so K̃ is a third-order formally skew-adjoint symmetry of H̃ .

Proof. This is a consequence of K∗ = −K, H̃ ∗ = H̃ and relations (24). �

Note. The preceding argument has to be modified in the special case that the system admits a
first-order α-independent symmetry L: [L,H(α)] = 0. Then K ′

1(α) need not be at most first
order as a polynomial in α. Indeed we can add a term f (α)L to K ′

1 without changing the
commutation relations. However, the conclusion (24) remains correct.

Example 4 (The 9-1 anisotropic oscillator). Let H(α) = ∂11 + ∂22 + α
(
9x2

1 + x2
2

)
. This is a

superintegrable system with generating second- and third-order symmetries

L = ∂22 + αx2
2 , K = {x1∂2 − x2∂1, ∂22} +

α

3

({
x3

2 , ∂1
} − 9

{
x1x

2
2 , ∂2

})
,

where {S1, S2} ≡ S1S2 + S2S1. Let U = (
9x2

1 + x2
2

)
+ c. It follows that the system

H̃ = 1(
9x2

1 + x2
2

)
+ c

(∂11 + ∂22 + b)

is superintegrable with one second- and one third-order symmetry.

5.3. Fourth-order operator symmetries

Next we consider the case of a fourth-order constant of the motion

K =
2∑

�,k,j,i=1

a�kji(x)p�pkpjpi +
2∑

m,q=1

bmq(x)pmpq + W(x) = K4 + K2 + K0. (25)

This must satisfy the conditions

aiiii
i = −2

2∑
s=1

asiii (ln λ)s, 4a
jiii

i + aiiii
j = −6

2∑
s=1

asiij (ln λ)s, i �= j, (26)

3a
jjii

i + 2a
iiij

j = −
2∑

s=1

asiii (ln λ)s − 3
2∑

s=1

asijj (ln λ)s, i �= j, (27)

2b
ij

i + bii
j = 6λ

2∑
s=1

asjiiVs −
2∑

s=1

bsj (ln λ)s, i �= j, (28)

bii
i = 2λ

2∑
s=1

asiiiVs −
2∑

s=1

bsj (ln λ)s,

and

λ

2∑
s=1

bsiVs = Wi. (29)

Note that a�kji is a fourth-order Killing tensor.
If K is a fourth-order symmetry operator, there exist functions a�kji, b̃ij , W̃ such that K

has the unique self-adjoint form

K =
2∑

�,k,j,i=1

1

λ
∂ij (a

�kjiλ∂k�) +
2∑

i,j=1

1

λ
∂i(b̃

ij λ∂j ) + W̃ = K ′
4 + K ′

2 + K ′
0, (30)

13
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where the functions b̃ij (x1, x2), W̃ (x1, x2) contain the parameter dependence. Equating
coefficients of the fifth derivative terms in the operator condition [K,H ] = 0 we obtain
exactly the Killing tensor conditions (26).

The remaining conditions on K intertwine λ, a�kji , b̃j i , W̃ and V, and are complicated.
Rather than solve them directly, we use the fact that the system with potential αU must
be solvable for all α, and require that the symmetry K(α) is analytic in α about α = 0.
The following argument for the form of K is correct, up to addition of operators f (α)L2 or
g(α) where L2 is a second-order self-adjoint α-independent symmetry operator. Modulo this
remark, K ′

1(α) must be at most a first-order polynomial in α and K ′
0(α) must be at most

quadratic. We can make the unique decomposition

b̃j i (x) = cji(x) + αbji(x)

W̃ = U(0)(x) + αU(1)(x) + α2W(x).

Substituting into [K(α),H0 + αU ] = 0 and equating the third derivative terms that are linear
in α, we get exactly conditions (28). Equating the coefficients of the zeroth derivative terms
that are quadratic in α we get exactly conditions (29).

Now we write K ′
2(α) = A2 + αB2, K ′

0(α) = A0 + αB0 + α2C0. It follows that

[K4,H0] = 0, [K4, U ] + [K2,H0] = 0, [K2, U ] + [K0,H0] = 0 (31)

where

K = K4 + K2 + K0, K4 = K ′
4 + A2 + A0, K2 = B2 + B0, K0 = C0.

Now define

K̃ = K4 − K2U
−1(H0 + b) + K0(U

−1(H0 + b))2,

where the operator order is important. A straightforward computation using identities (31)
yields [K̃, U−1(H0+b)] = 0. Thus, K̃ is a fourth-order symmetry operator for the Hamiltonian
U−1(H0 + b).

Theorem 7. Let H(α) = H0 +αU , let K(α) be a fourth-order self-adjoint symmetry of H(α),
analytic at α = 0. Then there are zeroth-, second- and fourth-order self-adjoint operators
K0,K2,K4 such that K(α) = K4 +αK2 +α2K0 and identities (31) are satisfied. The operator
K̃ = K4 − K2U

−1(H0 + b) + K0(U
−1(H0 + b))2 is a fourth-order symmetry for the system

H̃ = U−1(H0 + b).

Corollary 8. K̃∗ = K̃ so K̃ is a fourth-order formally self-adjoint symmetry of H̃ .

Example 5. This is an extension of example 3 to the quantum case [9]. Let

H = ∂11 + ∂22 + a
(
x2

1 + x2
2

)
+ b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 + c

(
x2

1 + x2
2

)
x2

1x2
2

.

There are two basic self-adjoint symmetry operators, one of second order,

K2 = (x1∂2 − x2∂1)
2 + 4b

x2
1x2

2(
x2

1 − x − 22
)2 + c

(
x4

1 + x4
2

)
x2

1x2
2

14
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and, one of fourth order,

K4 = (∂11 − ∂22)
2 +

[
2ax2

1 + 2b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 − 2c

(
x2

1 − x2
2

)
x2

1x2
2

]
∂11

+

[
−4ax1x2 + 8b

x1x2(
x2

1 − x2
2

)2

]
∂12 +

[
2ax2

2 + 2b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 + 2c

(
x2

1 − x2
2

)
x2

1x2
2

]
∂22

+

(
2ax1 − 4c

x3
1

)
∂1 +

(
2ax2 − 4c

x3
2

)
∂2 + a2

(
x2

1 − x2
2

)2
+

b2(
x2

1 − x2
2

)2

+ c2

(
x2

1 − x2
2

)2

x4
1x4

2

+ 8ab
x2

1x2
2(

x2
1 − x2

2

) + 2
bc

x2
1x2

2

+ 6c

(
1

x4
1

+
1

x4
2

)
.

These operators generate a closed symmetry algebra. Let R = [K2,K4]. The relations are

[K2, R] = 32H 2K2 − 32{K4,K2} − 64(b + 2c + 4)K4 + 64(b − c + 2)H 2

− 128a(b + 1)K1 − 128a(b2 + 2bc + 4b + 6c + 4),

[K4, R] = 32K2
4 − 32H 2K4 + 128aK2H

2 − 384a2K2
2 + 128a(b + 1)K4 − 64a(b + 4c

+ 6)H 2 + 256a2(2c − b + 14)K2 + 128a2(b2 + 4c2 + 20bc + 18b + 8c − 8).

There is also the Casimir operator

R2 = 32H 2{C1, C2} − 32

3
{C1, C2, C2} −

(
64β + 128γ +

2816

3

)
C2

2

+

(
128(β − γ ) +

2816

3

)
H 2C2 − (192 + 64β)H 4 − 128αH 2C2

1

− 128α(β + 1){C1, C2} +
128

3
α(12γ + 3β + 50)H 2C1 + 256αC3

1

− 256

3
α(44β + 44 + 18γ + 3β2 + 6βγ )C2 − 256α2(2γ − β46)C2

1

+
256

3
α(42 + 22γ + 40β + 3β2 − 6γ 2 + 21βγ )H 2 − 256

3
α2(152γ

− 88 + 182β + 3β2 + 12γ 2 + 60βγ )C1 +
256

3
(280γ 2 − 80β2 + 24γ 3

+ 320γ + 48β − 4βγ − 84βγ 3 − 54γβ2 − 3β2 + 28).

Then the Stäckel transformed system

H̃ = 1(
x2

1 + x2
2

)
+ B

(
x2

1 +x2
2

)(
x2

1 −x2
2

)2 + C

(
x2

1 +x2
2

)
x2

1 y2
2

+ D

×
(

∂11 + ∂22 + a
(
x2

1 + x2
2

)
+ b

(
x2

1 + x2
2

)(
x2

1 − x2
2

)2 + c

(
x2

1 + x2
2

)
x2

1x2
2

+ d

)

is also superintegrable with fourth- and second-order generating self-adjoint symmetries.
(Actually, we have here proved only that the transformed system is superintegrable for
a = b = c = 0, but the more general case will follow from theorem 8.)
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5.4. Nth-order operator symmetries

A possible structure of the Nth-order operator case is now clear, though it is far from clear
whether the structure includes all cases. Suppose the system H(α) = H0 +V +αU ≡ H +αU

admits a truly Nth-order symmetry operator K(α) analytic in α about α = 0, where N � 2
and K is self-adjoint for even N, skew-adjoint for odd N. Then we can write

K(α) = K ′
N +

[n/2]∑
j=1

K ′
N−2j (α)

where each K ′
N−2j is self-adjoint or skew-adjoint, depending on the parity of N. The symmetry

condition is ⎡⎣K ′
N +

[N/2]∑
j=1

K ′
N−2j (α),H + αU

⎤⎦ = 0, (32)

where K ′
N−2j (α) are analytic in α. Suppose, modulo terms of the form f (i)(α)LN−2j where

Ln−2j is an α-independent symmetry of H + αU for j > 0, we have

K ′
N−2j =

j∑
i=0

A
(i)
N−2jα

i, j = 0, 1, . . . , [N/2],

where A
(i)
N−2j are independent of α. Setting KN−2j = ∑[(N−2j)/2]

h=0 A
(j)

N−2j−2h we have

K = ∑[N/2]
j=0 KN−2j and the symmetry condition (32) becomes⎡⎣[N/2]∑

j=0

αjKN−2j , H + αU

⎤⎦ = 0, (33)

or

[KN−2j , U ] + [KN−2j−2,H ] = 0, j = 0, 1, . . . , [N/2], (34)

where we define KN−2j ≡ 0 for j > [N/2] and j < 0.
Now define

K̃ =
[N/2]∑
h=0

(−1)hKN−2h(U
−1(H + b))h,

where b is a constant. From relations (34) we have

[K̃, U−1(H + b)] =
[N/2]∑
h=0

(−1)h[KN−2h, U
−1(H + b)](U−1(H + b))h

= U−1
[N/2]∑
h=0

([KN−2h, U ](−1)h+1(U−1(H + b))h+1

+ [KN−2h,H ](−1)h(U−1(H + b))h)

= U−1
[N/2]∑
h=1

(−1)h
(
[KN−2h+2, U ] + [KU

N−2h,H ]
)
(U−1(H + b))h = 0.

(35)

Thus [K̃, H̃ ] = 0.
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Theorem 8. Let H(α) = H0 + V + αU ≡ H + αU and N � 2. Let K(α) be a nonzero Nth-
order operator symmetry of H(α) analytic at α = 0, self-adjoint for even N and skew-adjoint
for odd N. Suppose further there are operators KN−2j such that K(α) = ∑[N/2]

j=0 KN−2jα
j and

identities (33), (34) are satisfied. Then the operator K̃ = ∑[N/2]
h=0 (−1)hKN−2h(U

−1(H + b))h

is an Nth-order symmetry for the system H̃ = U−1(H + b).

Corollary 9. Let K(α) L(α) be Nth- and Mth-order operator symmetries, respectively, of
H(α), each satisfying the conditions of theorem 8. Then

[L̃, K̃] = ˜[L,K], L̃K̃ = ˜LK.

Example 6 (The 9-1 anisotropic oscillator). This is a generalization of example 4 to a full
Stäckel transform. Let H(0) = ∂11 + ∂22 + a

(
9x2

1 + x2
2

)
and L be as in example 4 with α

replaced by a + α, and U = (
9x2

1 + x2
2

)
+ c. It follows that the system

H̃ = 1(
9x2

1 + x2
2

)
+ c

(∂11 + ∂22 + a(9x2 + y2) + b))

is superintegrable with one second- and one third-order symmetry.

Note that theorem 8 does not require that the quantum system go to a classical system,
only that a scalable potential term can be split off. Thus, it applies to ‘hybrid’ quantum systems
that have a classical part.

Example 7 (The hybrid 9-1 anisotropic oscillator). Let H(0) = ∂11 +∂22 +a
(
9x2

1 +x2
2

)−2
/
x2

2 .
This is a superintegrable system with generating second- and third-order symmetries:

L = ∂22 + ax2
2 , K = {x1∂2 − x2∂1, ∂22} +

{
a

3
x3

2 +
1

x2
, ∂1

}
−

{
3x1

(
ax2

2 +
1

x2
2

)
, ∂2

}
.

Note that this system does not have a classical limit. (Using a different normalization that
makes clear the classical limit, Gravel writes this Hamiltonian as H(0) = −(h̄2/2)(∂11 +∂22)+
a
(
9x2

1 + x2
2

)
+ h̄2

/
x2

2 .) Let U = (
9x2

1 + x2
2

)
+ c. It follows that the system

H̃ = 1(
9x2

1 + x2
2

)
+ c

(
∂11 + ∂22 + a

(
9x2

1 + x2
2

) − 2

x2
2

+ b

)
is superintegrable with one second- and one third-order symmetry.

Example 8 (A translated hybrid 9-1 anisotropic oscillator). This is a slight modification of
example 7. Let H(0) = ∂11 + ∂22 + a

(
9x2

1 + x2
2

)
+ cx1 − 2

/
x2

2 . This is a superintegrable system
with generating second- and third-order symmetries, and no classical limit. Let U = x1. It
follows that the system

H̃ = 1

x1

(
∂11 + ∂22 + a

(
9x2

1 + x2
2

)
+ cx1 − 2

x2
2

+ b

)
is superintegrable with one second- and one third-order symmetry. This space is a Darboux
space of type 1 [2].

Example 9. Let H(0) = ∂11 + ∂22 + a
/
x2

1 − 2
/
x2

2 . This is a superintegrable system with two
linearly independent second and three linearly independent third-order symmetries [4]. This
system does not have a classical limit. (Using a different normalization that makes clear the
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classical limit, Gravel writes this Hamiltonian as H(0) = −(h̄2/2)(∂11 + ∂22) + a/x2
1 + h̄2/x2

2 .)
Let U = 1

/
x2

1 + c. It follows that the system

H̃ = x2
1

1 + cx2
1

(
∂11 + ∂22 +

a

x2
1

− 2

x2
2

+ b

)
is superintegrable with two linearly independent second- and three linearly independent third-
order symmetries. In the case c = 0 this is a superintegrable system on a space of nonzero
constant curvature. Indeed, for x1, x2 real, it is the upper half space metric of non-Euclidean
geometry.

In the operator case where V = 0 in theorem 8 there is always a corresponding classical
system. Indeed, equations (33) and (34) clarify the close relationship between symmetries of
quantum systems with potentials invariant under scaling and classical constants of the motion.
If we set α = 1/h̄2, V = 0 in (33), we can rewrite this expression as⎡⎣[N/2]∑

j=0

h̄N−2jKN−2j , h̄
2H0 + U

⎤⎦ = 0.

Further if we write the differential terms in the operators KN−2j as

KN−2j =
∑

is=1,2

ai1···iN−2j ∂i1 · · · ∂iN−2j
+ lower order terms,

we can associate these operators with the phase space functions

KN−2j (x, p) =
∑

is=1,2

ai1···iN−2j pi1 · · · piN−2j
.

Then by equating coefficients of the highest order derivative terms in equations (34) we obtain
the Poisson bracket relations

{KN−2j , U} + {KN−2j−2,H0} = 0, j = 0, 1, . . . , [N/2], (36)

so that K = ∑[N/2]
j=0 KN−2j is an Nth-order constant of the motion for the system with

Hamiltonian H = H0 + U .

6. Conclusions and outlook

We have found specializations of classical CCM that preserve the order of symmetries and
determine symmetry algebra homomorphisms, and for 2D manifolds we have extended them
to the quantum case. Generally speaking, these transforms apply to systems with a non-
constant potential that admits scaling in at least one parameter. They do not apply to quantum
systems with no classical counterpart in which the potential is fixed. This tool makes it
clear that superintegrable systems occur for a wide variety of manifolds, not just on constant
curvature spaces. For second-order superintegrable systems the Stäckel transform has been
used effectively in 2D to show that all such systems are transforms of systems on constant
curvature spaces, and this has lead to an elegant classification of all such systems. It is our aim
to develop CCM to investigate the possibility of a similar classification for third and higher
order superintegrable systems.

For simplicity, we have restricted our quantum constructions to 2D manifolds though
some partial results hold in n dimensions. There appears to be no insurmountable barrier to
extending these results to 3D and higher conformally flat manifolds, but the details have not
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yet been worked out. Clearly gauge transformations are required and the gauge will be a
function of the scalar curvature of the manifold.
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